>>> 1**3 + 12**3 == 9**3 + 10**3 == 1729
True
E = m * c**2
# E : "units of energy" in Joules
# e : "units of mass" in kg
# c : "speed of light" ~= 3.00 * 10**8 m/s
# Sunlight takes about 8 min. 17 sec. ( 8*60 + 17) secs.
# to travel avg distance (km) from
# surface of Sun to Earth(15 * 10**7)
# 1 kg of mass can produce:
>>> E = m * c**2
9e+16 Joules of energy!
# 1 Joules per second = 0.001 kW
I : Identity Matrix A : The matrix of coefficients D : Final Demand X : Vector of total output
import numpy as np
from numpy.linalg import inv
I = np.identity(3)
A = np.matrix ('0 .5 .3; .3 .1 .2; .4 .3 .3' )
# in thousands
D = np.matrix('20; 15; 18')
In [32]: I
array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])
In [33]: A
matrix([[ 0. , 0.5, 0.3],
[ 0.3, 0.1, 0.2],
[ 0.4, 0.3, 0.3]])
In [34]: D
matrix([[20],
[15],
[18]])
# in thousands
In [35]: inv(I-A)*D
matrix([[ 85.03448276],
[ 68. ],
[ 103.44827586]])